The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.
The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was modelled efficiently
Lamda Research TracePro 704
Full Text Available The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was
Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.
The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52 and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.
This report evaluates a newly-available, high-definition, video camera coupled with a zoom optical system for microscopic imaging of micro-electro-mechanical systems. We did this work to support configuration of three document-camera-like stations as part of an installation in a new Microsystems building at Sandia National Laboratories. The video display walls to be installed as part of these three presentation and training stations are of extraordinary resolution and quality. The new availability of a reasonably-priced, cinema-quality, high-definition video camera offers the prospect of filling these displays with full-motion imaging of Sandia's microscopic products at a quality substantially beyond the quality of typical video microscopes. Simple and robust operation of the microscope stations will allow the extraordinary-quality imaging to contribute to Sandia's day-to-day research and training operations. This report illustrates the disappointing image quality from a camera/lens system comprised of a Sony HDC-X310 high-definition video camera coupled to a Navitar Zoom 6000 lens. We determined that this Sony camera is capable of substantially more image quality than the Navitar optic can deliver. We identified an optical doubler lens from Navitar as the component of their optical system that accounts for a substantial part of the image quality problem. While work continues to incrementally improve performance of the Navitar system, we are also evaluating optical systems from other vendors to couple to this Sony camera.
Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision. 2ff7e9595c
Comments